Willkommen Welcome Bienvenue

Material Aspects in Metal Additive Manufacturing Challenges, Opportunities, Visions

Dr. Christian Leinenbach Empa - Swiss Federal Laboratories for Materials Science and Technology

Outline

- Introduction Current state of additive manufacturing of metals and alloys
- Challenges new materials for additive manufacturing
- Opportunities new materials by additive manufacturing
- Visions components from new materials with new functionalities

- Introduction Current state of additive manufacturing of metals and alloys
- Challenges new materials for additive manufacturing
- Opportunities new materials by additive manufacturing
- Visions components from new materials with new functionalities

Materials aspects in AM - overview

- Increasing interest in material science aspects of AM
- MS&T 2014, Pittsburgh
 - Special session «Materials science of AM»
 - 51 contributions
- TMS Annual Meeting 2015, Orlando
 - Main symposium «Additive Manufacturing»
 - 77 contributions
- MS&T 2015, Columbus
 - Main symposium «Additive Manufacturing»
 - 4 sessions, «Additive Manufacturing of Metals», «In-situ Process Monitoring, Defect Dectection and Control», «Materials Science of Additive Manufacturing», «Novel Material and Process Development for Additive Manufacturing»
 - >140 contributions
- Euromat 2015, Warzaw
 - Session: Materials Processing Additive Manufacturing

Materials aspects in AM - overview

- Journal of Materials Research, special issue September 2014 «Materials Science of additive manufacturing»
 - 34 papers on AM of metals, ceramics and polymers
- New Elsevier-journal «Additive Manufacturing»
 - "The journal covers a wide scope, comprising new technologies, processes, methods, materials, systems, and applications in the field of additive manufacturing"

The most widely used materials

- ~190 contributions to the previously mentioned conferences and journals were on metal AM (status: February 2015)
 - ~38% Ti-6Al-4V (cp-Ti)
 - ~21% Inconel 718/625
 - ~17% Stainless Steel (316L, 304)
 - ~9% Al-alloys (AlMgSi, AlCu)
 - ~8% Intermetallics (NiTi, γ-TiAl)
 - ~5% CoCrMo alloys
 - ~2% others (Mg-alloys, noble metals, composites, HEA)
- The typical title is «Microstructure and mechanical properties of Ti6Al4V/In718/SS316L produced by SLM/EBM/DMD»

Materials of interest for AM

- In Switzerland, there is a specific need for AM of the following materials
 - Advanced high-temperature alloys (γ'-hardening Ni-based alloys, Cobased alloys, TiAl) for power generation and aerospace applications
 - Tool steels, HSS, metal-superabrasives composites for advanced shape forming tools (grinding, cutting, milling etc.)
 - Precious metal alloys (Au-, Pd-, Pt-based) for jewelry and watches
 - Shape memory alloys (NiTi) for medical applications and microactuators
- → Useful information on the processability of those materials is very limited or not existing!

Parameters influencing the material properties

- The quality and the properties of AM manufactured components are strongly dependend on
 - AM processing technology (powder bed, powder feed, wire feed)
 - Energy transfer (laser, e-beam)
 - Beam shape
 - AM processing conditions (shielding gas, vacuum)
 - Scanning strategy machine type
 - Scanning parameters (P_{las}, v_{las}, hatch distance, layer thickness)
 - Alloy powder shape, grain size & size distribution
 - Powder impurities
 - Pre-heating
 - **...**
- → The correlation between the different parameters and the material properties needs to be better understood!

- Introduction Current state of additive manufacturing of metals and alloys
- Challenges new materials for additive manufacturing
- Opportunities new materials by additive manufacturing
- Visions components from new materials with new functionalities

What are the problems with AM processing of technical relevant alloys?

- Fast heating and cooling (ΔT≈10³–10⁵ K/s)
- suppressed phase transformations; supersaturated phases
- → segregation
- → hot cracking
- → thermal residual stresses
- Unidirectional heat flow into building plate/substrate
- → textured grains; anisotropic properties
- Every layer undergoes repeated heating and cooling cycles; temperatures can exceed T_{liq} or $T_{\alpha \leftrightarrow \beta}$
- → Multiple phase transformations and complex microstructures; thermal residual stresses

thermal profile of a single layer AM processed Ti-6Al-4V

/W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) 1917/

What are the problems with AM processing of technical relevant alloys?

- The phase transformations in multi-component alloys under AM conditions (=rapid solidification) must be understood and controlled!
- knowledge on stable and meta-stable phase diagrams required
- knowledge on thermodynamic and thermophysical quantities required
- knowledge on diffusion kinetics, mobilities required

Alloy development for AM – Empa approach

- Ultimate test: AM using an optimized alloy
 - AM equipment
 - new alloy according to specifications
 - suitable powder shape

processability=f(process, powder, alloy)

- Intermediate test: Alloy behavior during rapid melting and cooling using the AM equipment
 - equipment for rapid heating and cooling (=AM equipment)
 - new alloy in solid form
 - no powder needed

«processability»=f(process, alloy)

- First level test: Alloy behavior at high cooling rates
 - rapid cooling equipment (≠ AM equipment)
 - new alloy
 - no powder needed

«processability»=f(alloy)

Alloy development for AM – TiAl

- Ti-Al alloys of interest for high temperature structural components
 - low density (~3.9-4.2 g/cm³)
 - high Young's modulus (~140 GPa), high strength, creep resistant
 - higher oxidation resistance than Ti alloys
 - higher service T than Ti alloys
- Fully intermetallic
 - low elongation to fracture, brittle at room temperature
 - sensitive to contamination, properties strongly dependent on phase morphology
 - Extremely difficult to process by AM

Rapid solidification – basic offline tests

- heating and rapid solidification of small samples using W-electrode arc melting or laser beam melting
- size dependent cooling rates
 - spherical samples, the smaller the faster
 - cooling rate ~ r⁻²
- function correlating radius and cooling rate
 - single «material» parameter to describe the complete curve
- simulation verification by high speed camera measurement
 - comparable solidus propagation in experiment and simulation

/Kenel C, Leinenbach C. J Alloys Compd 2015;637:242/

Rapid solidification – FE modeling

- hexahedral meshed part ~ 160'000 elements
 - 50 elements across sphere
 - dense mesh below sphere for accurate heat transport
- boundary conditions for cooled Cu part
 - side and lower surface T=293 K
- modelled heat flows
 - conductive transport sphere-substrate
 - radiation of surface to ambient surrounding
- phase transformations
 - enthalpy of fusion included for solidification

Kenel C, Leinenbach C. J Alloys Compd 2015;637:242.

Influence of cooling rate on microstructure formation

Kenel C, Leinenbach C. J Alloys Compd 2015;637:242.

Influence of cooling rate on microstructure formation

- composition cooling rate microstructure maps
 - properties relevant to processing (here: formation of intermetallic phases)
 - data for alloy selection
 - similar to processing window determination experiments → indications for suitable processing parameters
- predictability based on equilibrium phase diagram information: limited

In situ Synchrotron XRD on rapidly heated and cooled alloys

(with J. Fife, H. Van Swygenhoven, D. Grolimund, S. Van Petegem – Paul-Scherrer-Institute, Villigen, CH)

experimental setup, top view

- setup of laser beam heating stage inside Synchrotron beam line at PSI
- in situ XRD during laser melting and soldification of Ti alloys
- feasability for controlled Ti- and TiAl melting and solidification
- high speed camera measurements for additional information

In situ XRD on rapidly heated and cooled alloys – preliminary results

- in situ (Laue) XRD during laser melting and solidification of Ti
- $\alpha \rightarrow \beta$ phase transformation and melting clearly observable
- high temporal resolution can be reached using synchrotron radiation
- facility can be used in other beamlines (e.g. tomography)

Development of phase selection hierarchy maps

- diffusion-less phase transformation
 - ideally no diffusion → all phases have the same composition
 - phase B transforms to A if $G_A < G_B$
- T₀ temperatures for different phase transformations and solidification
 - calculated using CALPHAD
 - based on published thermodynamic assessment for Ti-Al [1]
- map constituents
 - T₀ temperature curves for specific phase transformations
 - fields with a hierarchy according to the Gibb's free energy
- «phase diagram without diffusion»

Prediction of transformation behavior

- diffusion-less T₀ concept allows to predict the changed solidification behavior
- deviation from equilibrium phase diagram can be explained
- influence of kinetics for Ti-46Al at studied cooling rate
- complementary tool for alloy development
 - pre-screening of alloys
 - understanding of experimental results
 - reduction of experimental effort

AM of TiAl with more complex geometries

SLM 3D test structures (in collaboration with Inspire)

LMD test structure Ti-Al alloy (with TWI Ltd.)

CT of a LMD test specimen

note: structures were made from an Y₂O₃-ODS-variant

- Introduction Current state of additive manufacturing of metals and alloys
- Challenges new materials for additive manufacturing
- Opportunities new materials by additive manufacturing
- Visions components from new materials with new functionalities

New materials by AM

- Advantages of selective laser or electron beam melting
 - Short matter-beam interaction time due to high scanning speed
 - Small meltpool
 - High heating and cooling rates
- Very fast material consolidation
- Potential for processing of metastable materials, novel types of metalmatrix composites, or multi-material structures
 - Metal-diamond/metal-cBN composites
 - Novel High-entropy alloy components
 - **...**

New materials by AM - metal-diamond composites

(with A.B. Spierings, K. Wegener – Inspire/ETHZ)

- Metal-diamond composites interesting for high-performance cutting or grinding tools
- Conventional production: Galvanic Ni-bonding of diamond particles
 - Only single layer diamond tools possible, typically with simple geometry
- AM offers possibility to produce complexely shape geometries (e.g. internal cooling chanels
- Problem: Graphitization tendency of diamond particles at elevated temperatures
 - Depending on atmosphere (Inert atmosphere / vacuum $\approx 1'500^{\circ}$, Air $\approx 1'000^{\circ}$ C)

Approach: Brazing alloy as matrix material

Matrix material

Cu-based active brazing alloy

- Composition
 Cu
 Sn
 Ti
 Zr

 wt. %
 73.9
 14.4
 10.2
 1.5
- High thermal conductivity (> ≈ 55 W/mK)
- $T_{\text{liquidus}} = 925^{\circ}\text{C}$
- Powder with
 - $D_{10} = 7.6 \mu m$
 - $D_{50} = 20 \mu m$
 - $D_{90} = 38 \mu m$

Diamond particles

- 50 vol% Ni-coated to protect the diamond particles from graphitization (additional heat sink)
- Particles
 - Mean particle Ø 33.9 ± 6.4µm

Metal-diamond composites

- SLM processing of a of brazing alloy & diamond particles
 - Stable specimens with good surface quality can be produced

SLM-samples of Diabraze with 10 vol% diamond (left) and 20 vol% Ni-coated diamond (right)

They are difficult to remove from the base plate.

... and have already a very good abrasive effect!

Metal-diamond composites

SLM processing of a of brazing alloy & diamond particles

<u>Ion cross-section milled SEM pictures</u> of samples with 10 vol-% diamond particles

SEM (SE) - Micrographs of SLM-samples of Diabraze with 10 vol% Ni-coated diamond, energy input EL = $40.4 \, ^{J}/_{mm}3$ (left) and EL = $50.5 \, ^{J}/_{mm}3$ (right).

- Diamonds are homogeneously distributed in the matrix
- Diamonds survived almost unchanged
- Some remaining porosity and cracks are visible

Metal-diamond composites

XRD spectra

- The matrix consists of a mixture of a Cu solid solution and (Cu,Sn)₃Ti₅ with Cu as the main phase.
- Formation of TiC is more pronounced for the 20 vol-% samples than for the 10 vol-% samples

Intensity a.u.

- Ni fully dissolves in the matrix (Ni peak below treshold-level of XRD).
 - → Ni was detected by EDX.

XRD-spectra of Diabraze with 10 vol% Diamond (bottom) and 20 vol% Diamond (top). The identified phases are indicated.

- Introduction Current state of additive manufacturing of metals and alloys
- Challenges new materials for additive manufacturing
- Opportunities new materials by additive manufacturing
- Visions components from new materials with new functionalities

Visions

- In theory, AM allows for the fabrication of multi-material components and build-ups with complex geometries and new functionalities
 - Materials with integrated sensing capabilities (e.g. optical fibre gratings)
 - Graded structures with altered mechanical and physical properties
 - Repair of complexely shaped strcutures from composite materials
 - **...**
- Besides a thorough understanding of the materials, this requires a new level of process control
 - Local variation of laser power, scanning speed...
 - Pre-/post-heating to adjust cooling rates
 - **...**
- A control of the process requires a reliable online monitoring of the process
 - Melt pool geometries
 - Local temperatures
 - Effective laser power
 - **...**

Set-up for in-situ monitoring of laser processing

The dream

Thank you

Dr. Christian Leinenbach

Head Alloy Design and Processing Technologies Laboratory for Joining Technologies and Corrosion Empa

Swiss Federal Laboratories for Materials Science and Technology

Überlandstrasse 129

8600 Zurich/Dubendorf

Switzerland

Tel +41 58 765 4518

Fax +41 58 765 1122

christian.leinenbach@empa.ch

www.empa.ch

